Dot Products

Definition: The dot product of vectors \mathbf{x}, \mathbf{y} in \mathbb{R}^n is the scalar in \mathbb{R} defined by

 $\mathbf{x} \cdot \mathbf{y} = \frac{x_1 y_1}{x_1 + x_2 y_2} + \dots + \frac{x_n y_n}{x_n + x_n y_n}$

Example 1: Calculate $\mathbf{x} \cdot \mathbf{y}$ where

$$\mathbf{x} = \begin{bmatrix} 1\\2\\-1\\-3 \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} -1\\0\\-2\\1 \end{bmatrix}$$
(2)

(1)

$$\vec{X} \cdot \vec{y} = X_1 y_1 + X_2 y_2 + X_3 y_3 + X_4 y_4$$

$$= (1)(-1) + (2)(0) + (-1)(-2) + (-3)(1) = -1 + 0 + 2 - 3 = -2$$

Theorem 1 (Poole 1.2ad): For any vectors \mathbf{x} , \mathbf{y} in \mathbb{R}^n we have 1. $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ 2. $\mathbf{0} \cdot \mathbf{x} = \mathbf{x} \cdot \mathbf{0} = 0$ 3. $\mathbf{x} \cdot \mathbf{x} \ge 0$ and $\mathbf{x} \cdot \mathbf{x} = 0$ if and only if $\mathbf{x} = \mathbf{0}$

Example 2: Justify theorem 1 in \mathbb{R}^2 .

1)
$$\vec{x} \cdot \vec{y} = X_1 y_1 + X_2 y_2 = y_1 X_1 + y_2 X_2 = \vec{y} \cdot \vec{x}$$

2) $\vec{\varpi} \cdot \vec{x} = \mathcal{O}(X_1) + \mathcal{O}(X_2) = \mathcal{O}$
3) $\vec{x} \cdot \vec{x} = X_1^{\ a} + X_2^{\ a} \ge \mathcal{O}$
4) Suppose $\vec{x} = \vec{\varpi}$ Then $\vec{x} \cdot \vec{x} = \mathcal{O}$ by part 2
b) Suppose $\vec{x} \cdot \vec{x}$ eres, then $X_1^{\ a} + X_2^{\ c} = \mathcal{O}$
Then $X_1 = X_2 = \mathcal{O}$ and $\vec{x} = \vec{R}$.

Theorem 2 (Poole 1.2bc): For any vectors \mathbf{x} , \mathbf{y} , \mathbf{z} in \mathbb{R}^n and scalar c in \mathbb{R} we have that 1. $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$ 2. $\mathbf{x} \cdot (c\mathbf{y}) = c(\mathbf{x} \cdot \mathbf{y})$

Example 3: Justify theorem 2 in \mathbb{R}^2 .

$$\begin{array}{l} 1) \times \cdot (\hat{\gamma} + \hat{\Xi}) = \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix} \cdot \begin{bmatrix} \gamma_{1} + \gamma_{1} \\ \gamma_{2} + Z_{2} \end{bmatrix} = & \chi_{1} (\gamma_{1} + \chi_{2} (\gamma_{2} + Z_{2}) \\ \\ = & \chi_{1} \gamma_{1} + \chi_{1} Z_{1} + \chi_{2} \gamma_{2} + \chi_{2} Z_{1} = (\chi_{1} \gamma_{1} + \chi_{2} \gamma_{2}) + (\chi_{1} Z_{1} + \chi_{2} Z_{2}) \\ \\ = & \chi_{1} \dot{\gamma} + \chi_{2} \dot{\gamma} + \chi_{2} \dot{\gamma} \\ \\ = & \chi_{1} \dot{\gamma} + \chi_{2} \dot{\gamma} \\ \\ z) \dot{\chi} \cdot (c \hat{\gamma}) = \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix} \cdot \begin{bmatrix} c \gamma_{1} \\ c \gamma_{2} \end{bmatrix} = & \chi_{1} (c \gamma_{1}) + \chi_{2} (c \gamma_{2}) \\ \\ = & c (\chi_{1} \gamma_{1} + \chi_{2} \gamma_{2}) \\ \\ = & c (\chi_{1} \gamma_{1} + \chi_{2} \gamma_{2}) \\ \\ = & c (\chi_{1} \dot{\gamma}) \end{array}$$

Example 4: Use theorems 1 and 2 to show that for any vectors \mathbf{x} , \mathbf{y} , \mathbf{z} in \mathbb{R}^n and scalars c, d in \mathbb{R}

$$(c\mathbf{x} + d\mathbf{y}) \cdot \mathbf{z} = c(\mathbf{x} \cdot \mathbf{z}) + d(\mathbf{y} \cdot \mathbf{z})$$
(3)

$$(c\vec{x} + d\vec{y}) \cdot \vec{z} = \vec{z} \cdot (c\vec{x} + d\vec{y}) \quad (\text{therm 1})$$

$$= \vec{z} \cdot (c\vec{x}) + \vec{z} \cdot d\vec{y} \quad (\text{theorem 2})$$

$$= c(\vec{z} \cdot \vec{x}) + d(\vec{z} \cdot \vec{y}) \quad (\text{theorem 2})$$

$$= c(\vec{x} \cdot \vec{z}) + d(\vec{y} \cdot \vec{z}) \quad (\text{theorem 1})$$